Forcing Configuration
The forcing.json
file configures the input dataset for SINDBAD experiments, defining how forcing data is processed and integrated into model runs.
Data Dimensions
The data_dimension
section specifies the structure of input forcing datasets, enabling proper data processing for spatial and temporal operations.
"data_dimension": {
"time": "Name of the time dimension in the dataset",
"permute": "Order of dimensions in the processed data",
"space": "List of spatial dimensions"
}
Default Forcing Settings
The default_forcing
section defines default attributes for all forcing variables. These settings apply unless overridden in individual variable configurations.
"default_forcing": {
"additive_unit_conversion": "Flag for additive (true) or multiplicative (false) unit conversion",
"bounds": "Valid data range after unit conversion",
"data_path": "Path to the data file (absolute or relative to experiment base)",
"depth_dimension": "Name of depth dimension (null if none)",
"is_categorical": "Flag for categorical variables",
"standard_name": "Descriptive variable name",
"sindbad_unit": "Unit used within SINDBAD",
"source_product": "Data source identifier",
"source_to_sindbad_unit": "Unit conversion factor",
"source_unit": "Original data unit",
"source_variable": "Variable name in source file",
"space_time_type": "Data type classification"
}
Spatial Subsetting
The forcing_mask
section configures spatial subsetting of forcing data, enabling experiments on specific regions without creating new datasets.
"forcing_mask": {
"data_path": "Path to the mask file",
"source_variable": "Mask variable name in the file"
}
Note Temporal subsetting is configured in the time
section of experiment.json
. :::
Variable Configuration
The variables
section lists all forcing variables required for the experiment. Only settings that differ from default_forcing
need to be specified.
"variables": {
"f_variable_name": {
"bounds": "Valid range for the variable",
"standard_name": "Descriptive name",
"sindbad_unit": "SINDBAD unit",
"source_unit": "Original unit",
"source_variable": "Variable name in source file"
}
}
Variable Naming Convention
Use
f_
prefix for forcing variables loaded from data filesThis convention distinguishes them from variables computed within SINDBAD
Data Validation
Values outside specified bounds are truncated, not replaced with NaN
Ensure all required variables are available in the forcing dataset
Verify unit conversions and data types match model requirements